Green Walls Benefits

http://www.greenroofs.org/index.php/about/green-wall-benefits

Green Walls offer many public, private, and design-specific benefits.

A green façade at the Phoenix Convention Center, Phoenix, AZ
Winner of a 2011 Award of Excellence
Photo courtesy of Ten Eyck Landscape Architects

Public Benefits

Aesthetic Improvements

- Green walls can reclaim disregarded space by providing aesthetic stimulation where it would not otherwise be found. They can also serve to create privacy and a sense of enclosure while limiting the negative psychological effects associated with property demarcation.

Reduction of the Urban Heat Island Effect

- The reintroduction of vegetation into urban environments promotes the occurrence of natural cooling processes, such as photosynthesis and evapotranspiration.
- With strategic placement of green walls, plants can create enough turbulence to break vertical airflow, which slows and cools down the air (Peck et al. 1999).

Improved Exterior Air Quality

- Green walls mitigate air pollution levels by lowering extreme summer temperatures through photosynthesis, trapping particulate matter, and capturing gases.
- The ability of green walls to provide thermal insulation for buildings means less demand on power, and as a result fewer polluting by-products are released into the air.
Local Job Creation

- Green walls draw upon several disciplines for their design, installation and maintenance - such as landscape architects, architects, irrigation consultants, and more.
- Demand for a local supply of plant materials, blended growing media, greenhouse production, and fabrication of structural frames creates further business activity.

Private Benefits

Improved Energy Efficiency

- Green walls can reduce the temperature fluctuations at a wall's surface from a range of 10-60°C (50-140°F) to one of 5-30°C (41-86°F), in turn limiting the movement of heat between building walls (Minke 1982). They cause this reduction by:
  - Trapping a layer of air within the plant mass.
  - Reducing ambient temperature via evapotranspiration and shading.
  - Creating a buffer against wind during winter months.
- Green walls can help lower the air temperature around intake valves, which means HVAC units will require less energy to cool air before being circulated around a building.

Building Structure Protection

- Temperature fluctuations over a building’s lifetime can be damaging to organic construction materials in building façades. Green walls provide an additional layer of exterior insulation and thereby limit thermal fluctuations.
• Green walls protect exterior finishes and masonry from UV radiation and rain. They can also increase the seal or air tightness of doors, windows, and cladding by decreasing the effect of wind pressure (Peck et al. 1999).

**Improved Indoor Air Quality**

• Most North Americans spend 80-90% of their time indoors (Jenkins et al. 1992) and as a result are highly influenced by the effectiveness of interior air circulation systems. It has been estimated that problems associated with poor indoor air quality negatively affect workplace production by $60 billion per year in the United States (Reitze 1998).

• Air that has been circulated throughout a building with a strategically placed green wall (such as near an air intake valve) will be cleaner than that on an uncovered building. The presence of vegetation indoors will have the same effect.

• These processes remove airborne pollutants such as toluene, ethyl benzene, xylene, and other volatile organic compounds.

**Noise Reduction**

• The vegetated surface provided by strategic urban greenery such as green walls and roofs will block high frequency sounds, and when constructed with a substrate or growing medium support can also block low-frequency noises.

• For over 30 years plant life has been used to this end along freeways, arterials, and rail lines in North America and Europe.

**Marketing Potential**

• Green buildings, products, and services now possess a competitive edge in the marketplace.

• Green walls are an easily identifiable symbol of the green building movement since they are visible and directly impact the amount of green space in urban centers.

**Design-Specific Benefits**

**Increased Biodiversity**

• Green walls can help mitigate loss of biodiversity due to the effects of urbanization, help sustain a variety of plants, pollinators and invertebrates, and provide habitat and nesting places for various bird species.

**Improved Health and Well-Being**

• Buildings that feature and promote access to vegetation have been documented as having a greater positive human health impact than those without (Honeyman 1987).
Studies have shown that visual access to natural settings leads to increased job satisfaction and productivity (Kaplan 2001) and post-operative recovery rates in medical facilities (Ulrich 1983)

**Urban Agriculture**

Green walls offer the opportunity for urban agriculture, such as vertical gardens of small fruits, vegetables, and herbs.

**Onsite Wastewater Treatment**

Several water-recycling systems can be applied to green walls. These systems pump grey water through a green wall, which then passes through filters, gravel, and marine plants.

Treated water is then sent to a grey water holding tank for household or irrigation use or released into the public water treatment system (Shirley-Smith 2006). Some of these systems also collect stormwater, which is filtered for household use or irrigation purposes.

**Health & Wellness**

Living in urban environments, we are surrounded by concrete, traffic, noise and pollution. This is not healthy. It has a profound impact on our physical and mental wellness. Greenery softens this hard environment, acting as a tonic to ease stress and fatigue. Green walls provide a substantial and spiritual connection to nature which is missing in the modern concrete jungle.

Studies have shown that simply having a view of greenery increases workplace productivity. Furthermore, having plants indoors reduces symptoms of discomfort. This decreases the number of days off due to “sickness”. Gardens that are incorporated into hospitals calm patients leading to the improvement in clinical outcomes and shortened stays.

Air quality is an important aspect of health and wellness and plants have been proven to filter and remove toxins. They also add energy rich oxygen. With each additional plant these benefits are multiplied. A green wall, with thousands of plants, therefore has a major positive impact. This is explained in more detail under the Indoor Air Quality section.

Why is it that people feel more relaxed and less stressed around greenery? It is most likely due to man’s evolutionary bond with plants. According to some optometrists the human eye can distinguish between 2,000 shades of green, but only 100 shades of red. Through human evolution, recognizing a plant’s shade of green was really important when you were about to eat it or use it for shelter or medicine. This could be one of the reasons why we feel so comfortable around plants.

According to scientific reports carried out at American and European Universities, simply having a view of plants in a working environment give positive physiological responses. This translates into greater employee efficiency which results in increased earnings for a company. A study carried out at Washington State University had participants' blood pressure and emotions monitored while completing a simple, timed computer task in the presence or absence of plants. It concluded that when plants were added to this interior space, the participants were more productive (12% quicker reaction time) and less stressed (lower blood pressure). In addition, immediately after completing the task, participants in the room with plants present reported feeling more attentive than people in the room with no plants. Plants help people to feel more relaxed and focused, which lead to an increase in productivity, creativity, idea generation, and problem solving capabilities.
Another study was carried out at the Norwegian Agricultural University with the goal of assessing the effect of plants in an office on the health and symptoms of discomfort among office personnel. During randomized periods the subjects were exposed to bare office environments and to ones where plants were within view. It was found that during the periods that plants were present, symptoms such as cough, fatigue and dry / itchy skin decrease at 37, 30 and 23% respectively. If people have a view of foliage and feel healthier at work because of plants being present then the number of days off due to ”sickness” decreases.

It has been proven that hospitals which incorporate gardens have been shown to calm patients, improve their well-being and foster improvement in clinical outcomes such as reducing pain medication intake and shortening stays. This reduces the number of people in hospitals, the staffing and medicinal requirements and makes waiting times shorter, which therefore could reduce taxes.

You might have heard about casinos in Las Vegas and elsewhere that pump oxygen-rich air into the ventilation systems to make people stay awake longer and thus gamble more. Whether this is a myth or not, the idea behind it makes sense. It is a simple fact that when there is more oxygen in the air, we feel more alert and awake. Instead of installing an expensive system to add extra oxygen to the air, use what nature has given us and incorporate hundreds of plants organized into an artistic green wall. It is cheaper, has lower operating costs, uses much less electricity, constantly filters the air and has positive physiological benefits.

http://www.treebox.co.uk/human-benefits.html

HUMAN BENEFITS
THE ADVANTAGES OF LIVING WALLS
Along with other forms of urban greening such as planting trees and constructing green roofs, green walls provide a host of benefits to the environment, people living and working in the area and to the buildings themselves. This section provides more details on the human benefits offered by green or living walls.

Aesthetics
Vegetated surfaces can provide a visual impact and focus or be used to obscure unsightly structures and spaces.

Health and Wellbeing
Plants and greenery have been proven to provide uplifting and calming effects on people whilst having a positive impact on stress related illnesses. Studies have shown that simply having a view of greenery increases workplace productivity and patient recovery rates in hospitals.

Dust suppression
Large areas of greenery help to suppress dust particles, improving air quality around construction sites and busy highways. This can lead to a reduction in respiratory illness. There has been much focus recently on reducing PM10 particles to meet EU regulations.

Noise reduction
Planted surfaces have low reflectivity and high absorption properties. Ambient noise is attenuated so improving conditions for building occupants and pedestrians alike.

OUR SERVICES
We deliver sustainable urban greening solutions and products that cater for commercial and residential applications.

RESIDENTIAL  COMMERCIAL

OUR RESIDENTIAL PRODUCTS

https://www.ansgroupglobal.com/ans-blog/keen-on-living-well-get-a-living-wall/

Keen on living well? Get a living wall!
If you were put in front of a living wall and asked for feedback, what do you think your response might be? That it looks nice? That you feel calm and relaxed? Or maybe you would say you feel healthier, simply from being close to it.
That’s the thing about living walls – they look quite spectacular, and in my book that alone is a good enough reason to spend time in their company. However, visual aesthetics are far from the only benefit. In today’s environment of ever increasing concrete, traffic, noise and pollution, plant greenery can be a therapy to ease life’s stresses and strains. Living walls can provide that connection to nature, which is so often lacking in the modern world.

In a setting where people’s health might be compromised, such as hospitals, the presence of a living wall can go some way to improving patients’ wellbeing. As well as the calming affects plants have on humans in general, it is thought that the influence of permanent greenery could even go as far as cultivating improvement clinically, such as being able to reduce patients’ pain-relieving medication or leading to shortened hospital visits.

It is not only humans that can thrive on the presence of green walls – they are essentially complex eco habitats that encourage biodiversity and provide a haven for many forms of wildlife. A standard living wall comprises a carefully selected combination of plant species creating a sustainable environment for many creatures; and importantly, much needed extra habitat for urban wildlife.

It’s worth asking the question of why we feel noticeably calmer around greenery. It could be due to humans’ evolutionary bond with plants. According to some eye specialists, the human eye can distinguish between more than 1,500 shades of green but only 100 shades of red. As humankind has evolved, to detect a plant’s shade of green was crucial for deciding if it should be eaten, used medicinally or for shelter. This could be one of the reasons why we feel so comfortable around plants and why life feels more enriched and harmonious when they are part of our day-to-day existence.

[https://livewall.com/living-wall-benefits/](https://livewall.com/living-wall-benefits/)

### Why Living Walls?

You are here: Home » Why Living Walls?

**Many Benefits**

Planted living walls, first and foremost, are beautiful. These vertical gardens are also excellent at reducing energy consumption, cooling their surroundings, creating habitat and providing social benefits, peace, tranquillity, respite and inspiration. Plant wall use can even extend to the interior of the building where they help to purify air and create a peaceful, stress-relieving environment.

Let’s look at these environmental contributions to physical health and mental health in detail:

**Air Quality**
A green living wall improves air quality by reducing dust and particulates and promotes carbon reduction in the atmosphere by helping to reduce the amount of heat lost from your home or workplace. Through the natural process of evapotranspiration, your living wall plants also release water vapor that cools the air in summer and restores healthful moisture to heated spaces in winter.

The net effect may be a reduction of allergies from particulate reduction and improved resistance to cold, flu and itchiness thanks to hydrating the membranes and tissues of the nose, mouth, ears and eyes.

**Mental Health and Wellness**

If you live or work in a densely populated setting, access to green spaces helps to reduce the stresses of crowding and noise. Many social scientists believe that living walls reduce anxiety and anger in individuals, families and teams. People respond to the challenge of work and living in a civil, productive manner, facilitating both the brainstorming the solutions to problems and then achieving consensus and effective teamwork in solving those problems.

**Appearance**

Living walls provide an attractive yet varied year-round appearance with seasonal colors, growth, flowers and scents to make any space more appealing. One does not get tired of a room and repaint it or change wallpaper. No dirty smudges appear on walls that must be washed off, leaving unpleasant odors of cleansers and disinfectants.

**ROI**

In addition to a stable and more productive workforce, or happier family, living walls have demonstrated the potential to increase residential and commercial property values significantly. They help to create a positive perception for prospective purchasers of property. Vertical gardens warm up newly built homes and buildings and deliver immediate radiance and charm. Further, they can improve the environmental performance of buildings and therefore the economic performance through reducing heating and cooling costs. A planted, green living wall adds thickness to walls for improved thermal insulation. When planned by a professional designer or architect, living walls can significant reduce the cooling and heating costs of any structure.

Questions? Call us at 877-554-4065 or email us today.
Read more > Biophilia: The Impact Living Walls Have on People
Financial Benefits

When used for signage, a green wall is a great way to expand a brand. A living wall tells customers, residents, employees or neighbors that you care about your community, your health, and the ecosystem. Vertical gardens save energy and conserve resources. The evapotranspirative effects of living wall plants and the growing medium can reduce […]

Aesthetic Benefits
Living walls are an attractive organic alternative to traditional two-dimensional architectural siding treatments. They expand the usefulness of buildings and create three dimensional siding systems with beautiful green planters. They can be planted monochromatically, randomly, and in geometric color patterns. Colors, textures and scents change throughout the year. Artistic expression comes to life with LiveWall […]

**Health Benefits**

Planted living walls can significantly reduce ambient noise and create a more beautiful, relaxing and inspirational environment. This exposure to nature has been shown to reduce stress and allergies and contribute to mental and physical health. LiveWall plants have been proven to positively affect mood, perception, feelings and creativity. Colors such as red, orange and […]
Environmental Benefits

Living walls cool and quiet urban environments and provide natural habitat. LiveWall living walls help reduce urban heat islands. The urban heat island effect is the temperature difference between urban areas and their rural surroundings and is now documented as a significant contributor to climate change. The temperature differential causes air currents and dust, and […]

http://www.staffs.ac.uk/research/greenwall/

Green Wall Centre
• **What are Green Walls?**

Contact

At Staffordshire University researchers are studying green walls and hedges in Stoke-on-Trent and Newcastle-under-Lyme and different living wall systems in Birmingham, London and the Greater London area, looking at the environmental values of urban green walls (i.e. thermal insulation, particulate pollution, climate mitigation, etc.) with a specific focus on animal biodiversity and air pollution mitigation.

Working relationships have been forged with the main ‘green wall’ commercial companies in the UK (ANS, Biotecture, and Treebox and Mobilane), and experiments are taking place in cooperation with these companies.

Taking advantage of this expertise on green walls and experience in the different commercial systems, a Green Wall Centre has been set up within Staffordshire University to offer consulting services and continue research on green walls. The Centre’s Director, Professor John Dover, has written a book summarising the benefits of Green Infrastructure.

https://www.routledge.com/products/9780415521246

Four PhD students are undertaking research into different aspects of Green Walls. Please see the Research Projects page for further details.

An on-line course on Green Wall technology is being planned, please see our Conferences and Short Courses page for details.

In September 2014 the Green Wall Centre ran a very successful International Conference on Green Walls. For more information, please click on the International Green Wall Conference 2014 link below. The Green Wall Centre's researchers attended the Living Walls and Ecosystems Services conference at Greenwich University in July 2015. See Conferences and Short Courses for further details.

Conferences and Short Courses, including relevant events run by other institutions

Case Studies of Green Walls

International Green Wall Conference 2014

Types of Green Wall

Green Wall Attributes

Research Opportunities

Research Projects

**What are Green Walls?**

Any form of vertical surface which has a high proportion of its surface area covered with vegetation. Examples include:

- Stone or brickwork naturally colonised by plants
- Hedges
• Green façades: Walls covered in self-adhering plants (e.g. ivy), or those adhering to a support structure by tendrils or by twining stems (e.g. clematis, wisteria)

• Living walls:
  Modular systems using organic or inorganic growth media, typically watered and fed through irrigation lines
  Hydroponic ‘felt’-based systems such as the Patrick Blanc Mur Vegetal type
  Retaining walls planted-up with vegetation

WHERE CAN ONE FIND GREEN WALLS?
Green walls can be found in almost any urban situation: covering demarcation and building walls, on bridges, hiding ugly fences, on prestigious new office, retail and accommodation developments and on humble sheds and garages. Freestanding green walls such as hedges and green screens may act as garden fences, as temporary hoardings around development sites, as noise and light pollution barriers. Green walls can also be found increasingly inside buildings whether in department stores, atria, offices or even as kitchen gardens – inside the kitchen.

WHY ARE GREEN WALLS IMPORTANT?
Green walls can potentially deliver a wide range of ecosystem services including improving visual amenity (it is difficult to graffiti vegetation), reducing pollution (noise, particulates, gasses and aerosols), slowing down and reducing stormwater runoff, moderating local climates (heat islands), improving energy efficiency (by improving building insulation and thus reducing carbon emissions), improving mental health and providing biodiversity habitats (which may also improve connectivity).

SHORT COURSES - WHO SHOULD COME?
Anyone concerned with the quality of life in urban areas will find the courses of interest and value. Green walls are an important component of Green Infrastructure – possibly the only cost effective approach to coping with some of the immense challenges currently facing urban areas:

• climate change (coping with extreme events e.g. heat-waves, flooding)
• pollution (including health impacts)
• lack of wildlife habitat
• social problems (including mental health) resulting from high-density urban living.

Green walls as a component of Green Infrastructure are easier to retrofit than many alternatives, take-up less space, and can be rapidly deployed.

The green wall sector is exceptionally dynamic with new product developments and insights constantly emerging. The courses are aimed at anyone with an interest in the subject to learn what they can get out of this exciting technology.

Contact
Attributes

- Microclimate Mitigation and Urban Heat Island reduction
- Noise attenuation
- Air quality improvement
- Stormwater management
- Urban Biodiversity
- Contact

As a green infrastructure component, green walls have the potential to deliver many ecosystem services. They have experienced a revived interest since the creation of the Living Wall Systems approximately 20-25 years and are now quite familiar in urban areas.

Green walls, as with any other green infrastructure, create a semi-natural habitat when used in an urban environment. Irrespective of their size, structure or vegetation composition, they provide visual amenity. When free-standing, by structuring open areas they provide intimacy. Against a wall, they have the ability to hide ugly features or prevent damage such as graffiti.

Along with other infrastructure, Green Walls have the potential to address the following issues:

- They can reduce temperatures in urban areas and act as insulation on buildings.
- They can act as a noise barrier when installed along roads.
- They can reduce air pollution.
They can mitigate water run-off as well as reduce storm-water flows as part of a sustainable urban drainage system. Green walls on a building can be watered by the run-off from the building's roof.

They can increase urban biodiversity.

Microclimate Mitigation and Urban Heat Island reduction

Several studies have proved the potential of green walls to mitigate the weather through passive heat island reduction and thermal regulation of buildings. The mitigation is due to four mechanisms: (i) the ability of plants to intercept solar radiation through their shading, (ii) the effect of evapotranspiration by plants that can extract heat from the surrounding air, (iii) the thermal insulation provided by the vegetation (and by the substrate and structure in the case of living wall systems) and by the air gap between the vegetated structure and the building, and (iv) the alteration of the wind effect on the building.

The ability of plants to improve a building's microclimate has been well investigated, focusing at first on green façades and hedges, and, more recently, on living wall systems. In the 1980’s, one of the first studies looked at the use of wisteria, vine and ivy as solar control and established the inverse correlation between solar transmittance and ivy growth conditions; thus highlighting the potential use of green walls for thermal insulation.

Urban hedges and green screens, through their freestanding status, were studied for their thermal mitigation effect on the microclimate of the street canyon. As other green walls, they have significant functions of shading, lowering temperature, increasing humidity and modifying wind. Their efficiency will depend on the type of plant species and on the rooting media; e.g. mulch, acting as insulation, re-radiates more energy than other media like turf. Hedge presence (shrub cover or tree and shrub cover) was shown to reduce temperature in a built environment by at least 1°C, comparable to the modification of ambient temperature by living walls and green façades (from 1 to 4°C), thus reducing the urban heat islands (UHIs).

Due to the complexity of thermo-dynamic transmission process, studies usually focused on the development of computer models exploring the effect of a vertical greening system on a building and in a street canyon. They showed that the best efficiency of green walls for thermal mitigation will depend on locality, climatic elements and wall aspect but that the leaf density (expressed by the Leaf Area Index), which affects the amount of shade produced, and the evapotranspiration from the plantation are also important.

Experimental and simulation studies were mainly done in the Mediterranean area or in tropical climates; the main aim was usually to establish how green walls could assist in cooling building in summer rather than reducing heat loss in winter. Thus, green walls were showed to provide a significant cooling effect on the building surface, reducing the peak temperatures in summer. But in addition to the shading that reduces solar gains to the building and reduces heat flow into the building.
through passive cooling, green walls were also shown to be able to decrease heat flow losses and hence improve the energy efficiency of buildings.

**Noise attenuation**

Noise annoyance, especially along road corridors, is a major issue in urbanized areas and noise barriers have become ubiquitous features along busy roads. Their efficiency and integration into their surrounding appears to be enhanced by the presence of vegetation, as plants (especially leaves and stems) scatter high frequency sound waves, which have been shown to have a significant effect on human health.

Along with green roofs, green walls have been investigated for their acoustic effect, although to a smaller extent. Urban hedges were shown to have a significant effect in lowering noise, especially when composed of both shrubs and trees due to the multi-layered structure.

**Air quality improvement**

In urban areas, green walls, as well as other vegetated elements, have been investigated for their potential role in reducing air pollution, through particulate filtering. The dust-filtering ability of a plant is directly correlated with the foliar surface characteristics, the size, the hair density on the leaves and the quantity of lead waxes. With a large collecting surface area, green walls can play a great role in improving air pollution, especially as they promote vertical transport by enhancing turbulence. By assessing particulate abatement capacity (PAC), it has been found that hedgerows can provide an efficient barrier against road dust and can reduce particulate matter by 30% to 40%. Hedges can remove concentrations of total suspended particulate (TSP) and PM10 by up to 40-50%. The efficiency of vegetation to mitigate particulate pollution appears to depend on the density of planting, the plant canopy density, porosity and size, and the leaf morphology. As such, shrubs and hedges appear to be more efficient than trees (especially conifers) for dust-retention.

In addition to the particulate size, the chemical composition of the trapped particulates is of interest, especially in terms of heavy metals, as it has significant effect on human health. Having a green façade is an easy way to improve air quality as climbers like *Parthenocissus tricuspidata* (Japanese Creeper) are passive accumulators of heavy metal aerosol pollutants.

**Stormwater management**

Green roofs have been extensively studied for their ability to manage urban stormwater. Following the trend, similar studies have been made on green walls.

**Urban Biodiversity**

Green walls have the potential to contribute to the improvement of urban animal biodiversity by creating habitat, food sources (e.g. for wintering birds), corridors,
nesting sites, etc. However, little work has been done on this topic. Previous work published in German (see Köhler, Barth, Brandwein, & Gast, 1993 and reference therein), showed that green façades (either with ivy or grapevines) can be colonized by 19 different taxa of invertebrates from Araneae and Diptera to Diplopora and Siphonaptera. Although important work has been done on the animal biodiversity of green façades in Germany and of green roofs (Grant & Lane, 2006; Kadas, 2011; Madre, Vergnes, Machon, & Clergeau, 2013), findings are either difficult to access for non-German speakers, or not transferable to green walls. Recently, a 2-year study on green façades showed the value of green walls for urban birds. More birds were recorded directly on the walls or in their close surroundings, than in the exact same environment without vegetation on the wall (Chiquet, Dover, & Mitchell, 2013). Another work has studied the snail populations of green façades, showing the influence of seasonality and foliage on the relative abundance of species (Chiquet, Dover, & Mitchell, n.d.).

References


Köhler, M., Barth, G., Brandwein, T., & Gast, D. (1993). *Fassaden-und*
Dachbegrünung. Ulmer Fachbuch.

References:

http://www.staffs.ac.uk/research/greenwall/international-green-wall-conference-2014/

**International Green Wall conference 2014**


The Royal Institute of British Architects’ (RIBA) ‘President’s Award for Outstanding University-located Research’ has been awarded to academics from the university’s College of Arts and Humanities, Professor André Viljoen, Research Initiatives Leader, and Katrin Bohn, Senior Lecturer and recent Guest Professor at the Technical University of Berlin.

The award was presented at a gala evening at RIBA’s headquarters in London on 2 December.

The award-winning research is centred on the academics’ concept of Continuous Productive Urban Landscape (CPUL) which bridges a gap between sustainable thinking and lifestyles and current urban design debates.

Katrin Bohn and Professor Viljoen are leading figures researching the urban and architectural design implications of sustainable urban food systems. Much of this research is cross-disciplinary, engaging with artists, design researchers, planning and development practitioners and the public. Both actively use their research to inform teaching and learning in design at undergraduate and postgraduate level.
The award recognises the academics’ 2014 book ‘Second Nature Urban Agriculture: Designing Productive Cities’ which encapsulates a body of research from the past ten years and includes commentaries from international expert practitioners and theoreticians. It advances the theoretical case for CPULs with practical examples thereby exploring the architectural and urban design consequences of sustainable urban food systems.

The book also describes how to incorporate urban agriculture within open spaces and buildings creating a multifunctional productive urban landscape with the aim of advancing the quality of urban life while minimising the ecological footprint of cities.

Current and recent research activities include a major prototype productive urban landscape led by Katrin Bohn in the Berlin suburb of Marzahn and an Arts and Humanities Research Council
international network led by Professor Viljoen exploring pathways to policy in support of productive urban landscapes.

With the network they are exploring possibilities for an action research project to further test the CPUL concept in Letchworth, the world’s first Garden City. Bohn also leads a specialised architectural and environmental research consultancy with Professor Viljoen with projects mainly in Germany and the UK.

Katrin Bohn and Professor Viljoen, in a joint statement, said “Receiving this major award is a great honour for us and for all those working in the rapidly expanding world of ‘productive urban landscapes’. It recognises not only our work but that of the many individuals, organisations and cities putting these ideas into practice.”

In addition to their award, University of Brighton Masters in Architecture student, Irene Klokkari, received a commendation for her RIBA Part 2 Dissertation ‘Memories of Famagusta: recapturing the image of the city through the memories of refugee’.

The university’s Dr Karin Jaschke, Senior Lecturer and subject leader in postgraduate Architectural Humanities, was a member of the Dissertation Judging panel.

In attendance at the awards was Professor Anne Boddington, Dean of the University of Brighton’s College of Arts and Humanities, and Professor Gillian Youngs, the university’s Professor of Digital Economy.
